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SUPPLEMENTARY NOTE 1: MISCALIBRATION OF UNCERTAINTIES

Uncertainty estimates produced using the Deep Ensemble approach [1] for regression tasks are typically not cali-
brated to the magnitude of the error out-of-the-box (as shown in Supplementary Figure 4). However, depending on
the application post-hoc calibration approaches can be applied to correct for this [2-4]. Fortunately, within materials
discovery uncertainty estimates are typically made use of via active learning workflows [5-8] that are robust against
miscalibration of this sort. In active learning workflows an acquisition function is used to select candidates or batches
of candidates to test. For many choices of acquisition function [9] the acquisition function contains hyperparameters
that allow for the exploration-exploitation trade-off of the search process to be tuned. Often selecting such hyperpa-
rameters is akin to adjusting the temperature of the uncertainty distribution i.e. equivalent to a post-hoc calibration
of the uncertainty. When using such an acquisition function, as selecting hyperparameters is non-trivial, even for
calibrated uncertainties, the miscalibration of the model uncertainties is therefore not prohibitive for materials dis-
covery workflows provided the uncertainty estimates are well-behaved despite potential miscalibration. Indeed, due to
the difficulty of selecting good hyperparameters, search strategies that acquire batches of points by selecting multiple
candidates under a range of hyperparameters have been proposed for effectively searching chemical spaces [10].
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Supplementary Figure 1. Prediction Scatter Plots for Test Sets. The figure shows scatter plots of with marginal histograms
for the model predictions on the test sets for the OQMD, MP and EX data sets. The points are shaded according their log
density with dense regions of the scatter plot being darker. Both the marginal histograms are plotted with the same scale for
the count such that they can be compared fairly. The red dotted line shows a robust (Huber) line of best fit for the data.
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Supplementary Figure 2. Cumulative Error Distributions on Test Sets. The figure shows cumulative distributions for
the residuals and absolute error for the model predictions on the test sets for the OQMD, MP and EX data sets. In the top
row guidelines are shown for zero error and 50% of the data. The blue shaded region shows highlights the region in which 90%
of the data falls. In the second plot guidelines are shown for 50%, 75% and 90% of the data.
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Supplementary Figure 3. Ensemble Improvement with Additional Models. The figure shows how the MAE decays as
additional models are added to the ensemble. The curve is calculated by considering all possible combinations of available
single models. The shaded region indicates the 5 times the standard error of the different combinations to give an illustration
of the variability of different ensembles.
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Supplementary Figure 4. Uncertainty Distributions on Test Sets. The figure explores the distributions of the different
components of the predictive uncertainties for the OQMD, MP and EX data sets. The first row shows histograms of the log
ratio of the aleatoric and epistemic contributions to the uncertainty. In each instance we see relatively symmetrical distributions
but the magnitudes of the two contributions are not equal this is apparent in the fact that these distributions are not centred
around 0. The second row shows histograms for how the uncertainty estimates (Aleatoric, Epistemic and Total i.e. Aleatoric
+ Epistemic) and absolute residuals (Error) are distributed. Critically we see that the uncertainty estimates produced by
the model are mis-calibrated. The third row is equivalent to the second row but uses a kernel density function to allow the
distributions to be plotted as curves for improved clarity.
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Supplementary Figure 5. Uncertainty Distributions on Training Sets. A repeat of the analysis in Supplementary Figure
4. on the training sets rather than the test sets. In the first row we see that in the training set the epistemic uncertainty is
lower. This is observed as positive offset of the log ratio of the aleatoric and epistemic contributions to the uncertainty. This
behaviour is consistent with the expectation that within the training set all the different models in the ensemble should agree
strongly on their predictions, and therefore, result in a low epistemic uncertainty. The second and third rows show that in
general the predicted uncertainties are also mis-calibrated on the training set.
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